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Abstract. In this paper, we use submajorization to compare distances between either multisets
of real numbers or multisets modulo translation on the real line. We provide a geometrical in-
terpretation in which multisets are represented by points in an orbifold and bijections between
multisets are represented by paths between these points. This interpretation shows that sub-
majorization is closely related to the geometrical principle that the shortest path between two
points is a straight line. Our results have applications to diverse problems from economics to
music theory; moreover, they suggest generalizations of statistical measures of the center and
spread of a distribution.

1. INTRODUCTION. Consider the plot of income levels for four individuals shown
in Figure 1(a). In which year did incomes change the most? It is easy to answer this
question for any one individual, but it is unclear how to aggregate changes in the group
as a whole. Should we compare the sum of all individual changes, the largest individual
change, or something else entirely? The answer is even less clear if we want to measure
“relative” income mobility in a way that is insensitive to overall growth or inflation, as
in Figure 1(b).
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Figure 1. (a) Possible income changes for four individuals. (b) Income changes showing overall economic
growth.

These questions have been well-studied in the voluminous economics literature (see
Lorenz [8], Zheng [14], Mitra and Ok [10], and D’Agostino and Dardanoni [3]). Here,
however, we treat them as special cases of a more general problem. We would like
to assign an overall “size” to n simultaneous motions in the same one-dimensional
metric space, but we have no principled reason for choosing one particular metric
in the product space. In the cases to be considered, it is reasonable to assume that
the assignment will depend only on the multiset of distances moved by each of the
individual actors. Formulated in this general way, we will see that similar issues arise
in many different contexts.
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Figure 2. (a) Polyphony. (b) Average vocal movement.

Consider music theory, for example. Western polyphonic music articulates simulta-
neous melodies that also form meaningful harmonies (see Tymoczko [12, 13]). In stan-
dard musical notation, these two dimensions are represented spatially, with melodies
notated horizontally and harmonies notated vertically. Each dimension is subject to its
own constraint. To be perceived as coherent, melodies must move by short distances
while harmonies must sound similar to one another. The challenge in composing is to
design arrays of notes that are coherent in both ways at the same time.

Here again we face the problem of aggregating multiple motions in several inde-
pendent metric spaces. The composer’s job is essentially to minimize the “distance”
between successive verticalities (chords), where that “distance” is itself a composite
formed by motions in many distinct instrumental lines or “voices.” While it is rela-
tively clear how to measure the distance moved by any one musical line, it is unclear
how to trade off motion in one line against motion in another. Is it better for one line to
move by two units, or for two lines to each move by one unit? Remarkably, theorists
have sometimes asked these same questions in the presence of a musical analogue to
inflation, as it can be important to know how much the voices move relative to one

another, rather than absolutely [1], [13, Chapter 3]. In these circumstances, we factor
out motion shared by all voices, much as we might factor out inflation when measuring
changes in income.

In such circumstances, the familiar submajorization partial order usefully demar-
cates a set of basic metrical intuitions about multisets of distances. Given two n-
element multisets of nonnegative real numbers, X and Y , we say that X submajorizes

Y if the sum of the largest k elements of X is at least as large as the sum of the largest
k elements of Y , for all k from 1 to n [9]. The submajorization partial order encodes
the intuition that the size of a multiset is related to evenness. Given two n-element
collections summing to x , a more even distribution of values is no larger than a very
uneven distribution. Economically, this corresponds to the principle that a large num-
ber of small changes in income, distributed among many individuals and summing to
x , is no larger than a few changes in a small number of individuals, again summing
to x . Moreover, increasing any element of X does not decrease the multiset’s overall
size. These basic principles are common to many familiar metrics. In fact, if X sub-
majorizes Y then all L

p norms for p ≥ 1 agree that X is at least as large as Y (the
converse does not hold, however).

In this paper, we show that the submajorization partial order has a natural geomet-
rical description in the symmetric product spaces Rn/Sn , where Sn is the symmetric
group in n letters. These spaces are orbifolds—singular quotient spaces of Rn by Sn .
Points in these orbifolds represent “states” of the system. For example, in the economic
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case they might represent distributions of wealth in a society, while in the musical case
they might represent a particular chord. Use of the symmetric product expresses the
thought that the states we wish to consider are fundamentally unordered. The state in
which individual A has $2 and individual B has $5 is equivalent to the state in which
individual A has $5 and individual B has $2. Transitions from one state to another—
representing, for example, the richer individual losing $1 or giving $1 to the poorer
individual—can be associated with paths in these spaces. Each of these paths corre-
sponds to a multiset of distances in Rn . In this paper, we will apply submajorization to
these multisets of distances rather than (as is more typical) states themselves.

We begin by proving that this use of the submajorization partial order is equivalent
to two intuitive principles: (1) (the Monotonicity Principle) increasing the change ex-
perienced by any one individual does not decrease the size of the overall change and
(2) (the No-Crossings Principle) there is a minimal change between any two states
that preserves the order relationships among individuals (for instance, their relative
ranking in terms of wealth).1 This in turn allows us to understand submajorization
geometrically. The No-Crossings Principle asserts that there exists a minimal-length
path between any two points in the symmetric product space that does not touch a
singularity. Singularities in the orbifold correspond to multisets with multiple copies
of the same number, as when multiple individuals have the same wealth. Formulated
in this way, the No-Crossings Principle can be seen to be an analogue of the triangle
inequality for a restricted class of triangles. It follows that the submajorization partial
order endows the higher-dimensional orbifolds with more-than-topological, but less-
than-geometrical structure, allowing us to compare paths’ lengths without quantifying
these lengths numerically. The geometrical interpretation also suggests a way to ap-
ply submajorization when we wish to disregard the effects of uniform translation. In
musical terms, this allows us to measure the motion of musical voices relative to one
another, as in Figure 2(b). We use this construction to generalize statistical measures
of the center and spread of a distribution.

2. SUBMAJORIZATION. A state is a multiset of real numbers (an element of
Rn/Sn). A change is a bijection2 between two states, denoted (a1, a2, . . . , an) →
(b1, b2, . . . , bn), indicating that a1 is paired with b1, a2 is paired with b2, etc. The
multiset {|b1 − a1|, . . . , |bn − an|} is called the displacement multiset corresponding
to the change; it is simply the collection of distances between paired elements. These
definitions can be extended to the case where the one-dimensional metric space is the
circle rather than the real line, though we will not pursue this issue here.

Our goal in this paper is to explore what we can say about the size of a change, in
situations where we may not have principled reasons for choosing a particular metric
in Rn/Sn . Tymoczko [12] proposes three basic assumptions that are valid in a range of
applications: (1) the size of a change depends only on the displacement multiset, (2)
increasing any one element of the displacement multiset does not decrease the size of
the overall change, and (3) the overall size of a change between two states that pairs
elements ordered from smallest to largest is no greater than the size of any other change

1In the economics literature, D’Agostino and Dardanoni [3] propose “value sensitivity” and “order sensi-
tivity” conditions that are versions of the Monotonicity and No-Crossings Principles, respectively.

2The requirement that changes be bijective means that we cannot analyze changes between states with
different numbers of elements—a difficulty in economic applications, where individuals may leave or join a
society from year to year. However, economists frequently use percentiles or quintiles as proxies for individ-
uals, in which case changes will be bijective. Note also that bijections between multisets can be reinterpreted
as nonbijective relationships between sets. For example, (0, 4, 4, 7) → (0, 3, 5, 9) is simultaneously a bijec-
tive change between multisets {0, 4, 4, 7} and {0, 3, 5, 9} and a nonbijective pairing of the sets {0, 4, 7} and
{0, 3, 5, 9}.
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between the same two states. The last two assumptions define a partial order, ≤MNC,
on displacement multisets (that is, on the space of n-element multisets of nonnegative
real numbers Rn

+/Sn).
In what follows, x[i] denotes the i th largest element of the multiset {x1, . . . , xn}.

Definition 1. Let ≤MNC be the partial order induced on Rn

+/Sn by the following.

1. The Monotonicity Principle. If X and Y are n-element multisets of nonnegative
real numbers whose elements may be ordered so that Y is no less than X in each
coordinate, then X ≤MNC Y .

2. The No-Crossings Principle. If A = {a1, . . . , an} and B = {b1, . . . , bn} are mul-
tisets of real numbers, then

{|b[1] − a[1]|, . . . , |b[n] − a[n]|} ≤MNC {|b1 − a1|, . . . , |bn − an|}.

The No-Crossings Principle means that if X is the displacement multiset of the “un-
crossed” change pairing the largest element of some state A with the largest element
of another state B, the second largest element of A with the second largest element
of B, and so on, and Y is the displacement multiset of some “crossed” change from
A to B, then X ≤MNC Y . If we locate A and B on copies of the real line, as in Fig-
ure 3, and connect elements that are paired by a change from A to B, the change’s
displacement multiset consists of the absolute vertical distances traversed by the con-
necting line segments. According to the partial order ≤MNC, the “uncrossed” change in
Figure 3(a) should be at least as small as the “crossed” change in Figure 3(b). In eco-
nomic applications, the No-Crossings Principle states that an efficient redistribution of
income does not create an incentive to destroy money by making a poorer individual
better-off than a richer individual. In music, the principle states that a pianist can move
efficiently from chord to chord without tangling his or her fingers.

R R

(a[1], a[2], a[3])→(b[1], b[2], b[3])

R R(a) (b)

b[3] = a[2]

b[2]

b[1] = a[1]a[1]

a[2]
a[3]

a[1]

a[2]
a[3]

b[1]
b[2]
b[3]

(a[1], a[2], a[3])→(b[1], b[3], b[2])

Figure 3. The No-Crossings Principle: the displacement multiset of the change represented in (a) is less than
or equal to that in (b).

Now consider the well-known submajorization partial order on Rn

+/Sn .3

Definition 2. Submajorization ≺w is the partial order induced on R+
n
/Sn by the fol-

lowing.

1. The Monotonicity Principle. If X and Y are n-element multisets of nonnegative
real numbers whose elements may be ordered so that X is less than or equal to
Y in each coordinate, then X ≺w Y .

2. The Dalton Transfer Principle. Let {x1, . . . , xn} be a multiset of nonnegative real
numbers. If xi ≥ x j , then

3See Marshall and Olkin [9] for a thorough introduction to majorization and its associated geometry. Ty-
moczko refers to this formulation of submajorization as the “distribution constraint” in [12].
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{x1, . . . , xi − �, . . . , x j + �, . . . xn} ≺w {x1, . . . , xi , . . . , x j , . . . xn} (1)

for all � such that 0 < � ≤ xi − x j .

In traditional economic applications, the numbers in the multiset would represent
states (e.g., the number of dollars in one’s bank account) and inequality (1) would
represent a Dalton transfer that redistributes resources from a wealthy individual to
a poorer one. A basic principle of economics is that Dalton transfers do not increase
income inequality [4, 5]. In this paper, however, the numbers will be interpreted as
displacement multisets representing (for example) the changes in individual assets.
The Dalton transfer principle, when applied to displacement multisets, asserts that even
distributions of motion are smaller than uneven distributions. A few large changes will
produce a larger quantity of total motion than will many small changes summing to
the same value.

We now show that the submajorization partial order, when applied to displacement
multisets, is equivalent to the No-Crossings Principle defined above. An informal proof
of this theorem is also given in Tymoczko [12].

Theorem 1. The partial order induced on Rn

+/Sn by ≤MNC is equivalent to the sub-

majorization partial order ≺w.

Proof. We claim that the partial order induced on Rn

+/Sn by the No-Crossings Princi-
ple is equivalent to the partial order ≤NC induced by the following two conditions:

C1. {x1, . . . , xi , . . . , x j , . . . xn} ≤NC {x1, . . . , xi + �, . . . , x j + �, . . . xn} for all � > 0
and i �= j , and,

C2. if xi ≥ x j , then {x1, . . . , xi , . . . , x j , . . . xn} ≤NC {x1, . . . , xi + �, . . . , x j − �,
. . . xn} for all � such that 0 < � ≤ x j .

Since condition C2 is equivalent to the Dalton Transfer Principle, while C1 is weaker
than the Monotonicity Principle, proof of our claim suffices to prove the theorem.

Suppose X, Y ∈ Rn

+/Sn and X ≤NC Y . We may assume X ≤NC Y by direct appli-
cation of either condition C1 or C2. In these cases, X and Y differ in exactly two
coordinates, so it suffices to consider n = 2.

Case 1. Suppose X ≤NC Y by C1. Let X = {x1, x2}; then Y = {x1 + �, x2 + �} for
some � > 0. Let A = {0, �} and B = {−x1, x2 + �}.

Case 2. Suppose X ≤NC Y by C2. Let X = {x1, x2} where x1 ≥ x2; then Y = {x1 +
�, x2 − �} for some 0 < � ≤ x2. Let A = {0, �} and B = {x1 + �, x2}.

In both cases, we conclude that X is less than or equal to Y by the No-Crossings
Principle.

Suppose X is less than or equal to Y by the No-Crossings Principle. It suffices to
consider instances where the change A → B contains a single crossing, and hence to
restrict our attention to n = 2. There exist A = {a1, a2} and B = {b1, b2} where a1 ≥
a2 and b1 ≥ b2 such that X = {|b1 − a1|, |b2 − a2|} and Y = {|b1 − a2|, |b2 − a1|}.
Without loss of generality, suppose a1 ≥ b1. There are three cases.

Case 1. If a1 ≥ b1 ≥ b2 ≥ a2, then X = {a1 − b1, b2 − a2} ≤NC {a1 − b2, b1 − a2} =
Y by C1, where � = b1 − b2.

Case 2. If a1 ≥ a2 ≥ b1 ≥ b2, then X = {a1 − b1, a2 − b2} ≤NC {a1 − b2, a2 − b1} =
Y by C2, where � is the smaller of {a1 − a2, b1 − b2}.
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Case 3. If a1 ≥ b1 ≥ a2 ≥ b2, then X = {a1 − b1, a2 − b2} ≤NC {0, a1 + a2 − b1 −
b2} by C2, and {0, a1 + a2 − b1 − b2} ≤NC {b1 − a2, a1 − b2} = Y by C1.

The following equivalent definition of submajorization will prove useful (see Lem-
mas 1 and 2 in [6, p. 47] for proof that it is equivalent to definition 2).

Definition 3. Let X = {x1, . . . , xn} and Y = {y1, . . . , yn} be multisets of nonnegative
real numbers. We say that Y submajorizes X and write X ≺w Y if and only if

j�

i=1

x[i] ≤
j�

i=1

y[i] for 1 ≤ j ≤ n. (2)

In other words, the sum of the j largest members of X is less than or equal to the
sum of the j largest members of Y , for all j less than or equal to n.

A fourth definition clarifies the sense in which submajorization demarcates a “zone
of agreement” among a range of different approaches to quantifying the size of a
change.

Definition 4. Let X and Y be n-element multisets of nonnegative real numbers. Then
X ≺w Y if and only if f (X) ≤ f (Y ) for every real-valued function that is symmetric,
convex, and increasing.

A real-valued function on Rn

+ is:

1. symmetric if it is well-definted on Rn

+/Sn (that is, f (v) = f (σ (v)) for all σ in
Sn),

2. convex if, for any vectors v, w in Rn

+, f
�

1
2 (v + w)

�
≤ 1

2 ( f (v) + f (w)), and
3. increasing if it is increasing in each of its elements.

Functions that are symmetric, convex, and increasing are called strongly isotone.
The equivalence of the convexity condition and submajorization follows from [9,
Proposition 3.C.2, p. 67]. Thus, submajorization is equivalent to consensus among
all strongly isotone measures. Examples of strongly isotone functions include the
L

p-norms for p ≥ 1, where the L
p-norm of a multiset X in Rn

+ is defined to be
||X ||p =

��
n

i=1 x
p

i

�1/p

, and functions � j summing the j largest elements of a multiset
(that is, � j (X) := �

j

1 x[ j], as in equation (2), above). In fact, any symmetric norm on
Rn is strongly isotone.

2.1. The geometry of submajorization. States can be represented as points in the
symmetric product Rn/Sn; these spaces are singular at points whose coordinates
contain two or more instances of the same number. Changes can be identified with
the images, in the quotient spaces, of line segments in Rn .4 When these changes have
crossings they will appear in the quotient spaces to “bounce off” singularities. For
instance, the shaded region in Figure 4 represents the space R2/S2, a half-plane con-
taining all points x ≥ y and singular at the line x = y. The change (0, 3) → (2, 5) is
represented by line segment P in the parent space R2, which appears to be straight
in the quotient. The change (0, 3) → (5, 2) is represented by the “generalized line
segment” Q, which appears to “bounce off” the singularity. Note that we distin-
guish “generalized line segments,” which may appear to reflect off a singularity,

4Formally, the image in the quotient of the line segment a + t (b − a) for t ∈ [0, 1] represents the change
a → b, where a, b ∈ Rn .
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from “proper line segments” which touch the singularities only at their endpoints, if
at all. The advantage of working in a singular orbifold, rather than in the subspace
x1 ≤ x2 ≤ · · · ≤ xn , is that the orbifold allows us to define “generalized line segments”
which are in one-to-one correspondence with our “changes.” In the nonsingular sub-
space, there is no collection of natural geometrical objects that represents all possible
changes.

Submajorization, when applied to displacement multisets, requires that the line seg-
ment P be shorter than or equal to the generalized line-segment Q. It is clear from
Figure 4 that this constraint is closely related to the triangle inequality, since change
Q forms two legs of a triangle, while P forms the third. However, the condition is not
equivalent to the triangle inequality—it applies only to triangles created when a line
encounters a singularity of the quotient space.

(0, 3)

(2, 5)

P

R2/S2

(5, 2) ≡ (2, 5)
Q

Figure 4. The changes P : (0, 3) → (2, 5) and Q : (0, 3) → (5, 2) in R2/S2.

By allowing us to compare distances without quantifying them, submajorization
produces a structure intermediate between geometry and topology in the higher-
dimensional symmetric product spaces Rn/Sn . This can be seen by considering the
analogue of “spheres” and “balls” in our partial-order geometry.

In what follows, let � j (X) denote the sum of the j largest elements of a multiset
X of nonnegative numbers (that is, � j (X) = �

j

i=1 x[i]). Note that �1(X) = max{xi }
is also known as the L

∞ norm of X (that is, ||X ||∞), and �n(X) equals ||X ||1. For a
vector v = (v1, . . . , vn) ∈ Rn , let {|vi |} = {|v1|, . . . , |vn|}.

Definition 5. The � j -ball of a multiset X of nonnegative numbers is the set of vectors
v in Rn such that � j ({|vi |}) ≤ � j (X). The inner submajorization ball is the intersec-
tion of the � j -balls, and the outer submajorization ball is the union of the � j -balls.

Note that the inner submajorization ball of a multiset X of nonnegative real num-
bers is the set of vectors v such that {|vi |} ≺w X , while the closure of the complement
of the outer submajorization ball is the set of vectors v such that {|vi |}w � X . If a
vector v lies between the inner and outer submajorization balls, then {|vi |} and X are
incomparable by submajorization. In general, a � j -ball is the set of simultaneous so-
lutions to the system of linear inequalities of the form e1v1 + · · · + envn ≤ � j (X),
where each ei is chosen from the set {0, 1, −1}, and exactly j of the ei are nonzero.
Each � j -ball is a convex polytope that is invariant under the group of signed permu-
tations. For example, in R2, the �1- and �2-balls are filled squares, one rotated by
45◦. Figure 5 shows a possible configuration. In R3, the �1-ball is a filled cube, the
�2-ball is a filled rhombic dodecahedron, and the �3-ball is a filled octahedron. The
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u : X ≺w u

X

inner submajorization ball incomparables

�1-ball

�2-ballv : v ≺w X

Figure 5. Submajorization balls in R2. A vector whose coordinates form the multiset X divides space into
three regions. The white region contains vectors whose length is less than X by submajorization, while the
light gray area contains vectors whose length is more than X by submajorization. The dark area between them
represents a “zone of acceptable disagreement” where metrics can disagree about the length of vectors relative
to X without violating either the No-Crossings or Monotonicity Principles.

inner submajorization ball—the intersection of the � j -balls for 1 ≤ j ≤ n—is the
convex polytope whose vertices are the signed permutations of the elements of X [9,
Prop. C.2, p. 113]. Figure 6 shows how the No-Crossings Principle and the Mono-
tonicity Principle define regions of comparability and incomparability that combine to
form the submajorization ball.

X
X

larger than X by the No-Crossings Principle larger than X by the Monotonicity Principle

smaller than X by the Monotonicity Principlesmaller than X by the No-Crossings Principle

incomparables

incomparables

Figure 6. The geometry of Definition 1 in R2. Both the No-Crossings Principle and the Monotonicity Principle
define unbounded regions of incomparability. Note that, for both conditions, the set of points in R2 whose
displacement from the origin is less than X is nonconvex. The two conditions combine to produce the convex
submajorization balls in Figure 5(a).

Example. We construct the inner submajorization ball for {1, 4, 5}. The �1-ball is
the filled cube with vertices (±5, ±5, ±5). The �2-ball is the set of simultaneous solu-
tions to the linear inequalities of the form e1x + e2 y + e3z ≤ 9, where ei ∈ {−1, 0, 1}
and exactly two of the ei ’s are nonzero; it is a filled rhombic dodecahedron. The �3-
ball is the set of simultaneous solutions to the linear inequalities e1x + e2 y + e3z ≤ 10
where the ei terms are either 1 or −1; it is a filled octahedron. The inner subma-
jorization ball is the intersection of these; its vertices form the set {σ (e1, 4e2, 5e3)|σ ∈
Sn, ei ∈ {−1, 1}}. The set of vectors that submajorize {1, 4, 5} is the complement of
the union of the interiors of the three � j -balls.
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A straightforward argument (see Appendix A.1) shows that the region of incompa-
rability lies between the Euclidean spheres of radius

r = min
�

j
−1/2� j (X) | 1 ≤ j ≤ n

�
,

and

R = max
�
n

1/2�1(X), �n(X)
�
,

and these bounds are tight. Therefore, the Euclidean sphere sits in the “middle interval”
of the region of incomparability, with either the L

1 or L
∞ ball containing the points

that have maximal Euclidean distance from the center. These bounds are useful for
error analysis, as they set quantitative limits on the “zone of disagreement” within
which acceptable measures can differ.

3. SUBMAJORIZATION MODULO TRANSLATION. Let us now consider how
we might use submajorization to measure changes in a way that is insensitive to over-
all translation. As we will see below, this problem arises when measuring similarity
among types of musical chords; it is also related to the problem of measuring income
inequality in a way that is insensitive to inflation. The idea is to consider all states
{x1 + c, . . . , xn + c} to be equivalent, since they differ only by addition of the com-
mon factor c. Changes between states can now be reinterpreted as changes between
the equivalence classes they represent. We would then like to use submajorization to
compare distances between these equivalence classes of states, which requires finding
minimal changes between them.

Geometrically, our equivalence classes are represented by lines in Rn/Sn paral-
lel to the line from the origin to 1 = (1, 1, . . . , 1). Each line can be associated with
its intersection with the hyperplane containing points whose coordinates sum to zero
(the zero-sum hyperplane where

�
xi = 0). The space of these equivalence classes,

Rn−1/Sn , is therefore endowed with a “barycentric coordinate system” [2]. Figure 7
depicts these orbifolds in the case n = 3.

Note that although we can use the zero-sum hyperplane to provide a coordinate
system for our equivalence classes, we cannot rely on these coordinates when applying

y < z < x x < y < z

z < y < x x < z < y

y < x < z

z < x < y

x – y

z – x

y – z (b)(a)

mirrors

R2/S3

Figure 7. (a) The projection of the coordinate axes in R3 onto the plane x + y + z = 0. (b) The orbifold
R2/S3 formed by identifying points whose coordinates are related by permutation.

April 2012] SUBMAJORIZATION AND GEOMETRY 271



submajorization to changes between these classes. For example, consider points A =
{0, 0, 0, 8} and B = {0, 0, 6, 6}. Let [A] and [B] represent the lines {c, c, c, 8 + c}
and {c, c, 6 + c, 6 + c} respectively. These lines intersect the zero-sum hyperplane
at A

� = {−2, −2, −2, 6} and B
� = {−3, −3, 3, 3}. Submajorization tells us that the

point B
� must be at least as close to the origin as A

�, since {6, 2, 2, 2} submajorizes
{3, 3, 3, 3}. However, it does not tell us that the equivalence class [B] is closer to the
origin than [A]. To see this, note that there are L

p norms that disagree about which
line is closer to the line x1 = x2 = x3 = x4 (i.e., the equivalence class containing the
origin). According to L

1, [A] is closer to this line than [B] (distance 8 vs. 12), while
according to L

∞, the opposite is the case (distance 4 vs. 3).
The issue here is that we do not have metric-independent reasons for using the co-

ordinates in the zero-sum hyperplane. If we are using L
2, then points in the hyperplane

minimize the distances among the lines they represent. When we turn to other metrics,
this is no longer the case. It is interesting that some applications, including economics,
give us independent reasons to choose this particular hyperplane, as we will see shortly.
In other cases, however, we need a more sophisticated approach.

Definition 6. Let V = {v1, . . . , vn} and W = {w1, . . . , wn} be multisets of real num-
bers. We say that W is T-smaller than V if, for any real number x , there exists a real
number y such that

{|wi − y|} ≺w {|vi − x |}. (3)

Intuitively, the definition says that the equivalence class of W -translations is at least
as close to the origin as the equivalence class of V -translations, according to the sub-
majorization partial order. More precisely, for every translation of V by x , there ex-
ists a translation of W by y which is closer to the origin according to submajoriza-
tion. Note that here the coordinates of an equivalence class of states are representing
changes that take the class to the equivalence class containing the origin. Geometri-
cally, W is T-smaller than V if and only if the line {wi − y} for y ∈ R intersects the
inner submajorization ball of {|vi − x |} for all x . Equivalently, W is T-smaller than
V if and only if the projection of W to the zero-sum plane lies in the intersection,
over all real x , of the projections to the zero-sum plane of the inner submajoriza-
tion balls of {|vi − x |}. Figure 8 depicts a possible configuration of submajorization
balls.

T-larger than V

incomparables

T-smaller than VV

Figure 8. T-smallness in the projection of R3 to the zero-sum plane.
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Unfortunately, it is difficult to give an explicit characterization of the submajoriza-
tion balls in this projective context. The regions are characterized by the simultaneous
satisfaction of multiple inequalities, and do not seem to admit of a more intuitive de-
scription. Our goal in this section, therefore, will be to provide an efficient algorithm
that can be used to determine whether one vector submajorizes another when transla-
tions are disregarded. Along the way, we will uncover some links between the current
discussion and familiar topics from statistics.

Consider the set {{|vi − x |} : x ∈ R}. An element of a partially ordered set is min-

imal if and only if it is not larger than any other element of the set. Note that there
may be multiple minimal elements, all mutually incomparable according to the partial
order. A least element is less than or equal to any other element in the set. We show
in Lemma 2 that an element of {{|vi − x |} : x ∈ R} is minimal in the submajorization
partial order if and only if x lies in a closed interval which we call the “middle interval”
of V (see Figure 9).

middle interval
mean

median

v[n] v[1]· · · v[2]· · ·

M =
�

1
2 (v[i] + v[n−i+1]) : 1 ≤ i ≤ �n/2�

�

R

Figure 9. The middle interval of a multiset V . On the real line, the middle interval is the set of “acceptable
centers” of V .

Definition 7. Let V = {v1, . . . , vn} be a multiset of real numbers and let M be the set

M =
�

1
2 (v[i] + v[n−i+1]) : 1 ≤ i ≤ �n/2�

�
.

The middle interval of V is the interval [min M, max M].

For example, if V = {9, 8, 0, 0, −1, −3}, then M = { 1
2 (9 − 3), 1

2 (8 − 1), 1
2 (0 +

0)} = {3, 3.5, 0} and the middle interval of V is [0, 3.5].

Lemma 1. Let V = {v1, . . . , vn} be a multiset of real numbers. For any j , 1 ≤ j ≤ n,

� j ({|vi − x |}) is a convex function of x that attains its minimum at x = m j , where

m j = 1
2 (v[k] + v[n−k+1]) for k = � j/2�.

Proof. Let Sj (x) ⊂ V be the multiset of the j most distant points in V from x (if there
are multiple j th most distant points, choose elements so that the cardinality of Sj (x)
is j). Let r j (x) be number of elements of Sj (x) that are greater than or equal to x , and
let l j (x) be the number of elements that are less than x . The function

� j ({|vi − x |}) =
�

s∈S j (x)

|s − x |

is continuous and piecewise linear. Its slope, when defined, is l j (x) − r j (x), which
is an increasing function that either equals zero when x equals m j (for j even), or
changes sign at x = m j (for j odd). Therefore, � j ({|vi − x |}) is convex and attains its
minimal value at x = m j .
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Lemma 2. Let V = {v1, . . . , vn} be a multiset of real numbers. The multiset {|vi − m|}
is a minimal element of {{|vi − x |} : x ∈ R} with the submajorization partial ordering

if and only if m lies in the middle interval of V .

Proof. Let M denote the middle interval of V and let

D(V ) = {{|vi − x |} : min M ≤ x ≤ max M} .

There exist odd integers s and t such that: (1) the unique minimum of �s({|vi − x |})
occurs at x = max M and �s({|vi − x |}) is strictly decreasing for x ≤ max M , and
(2) the unique minimum of �t({|vi − x |}) occurs at x = min M and �t({|vi − x |})
is strictly increasing for x ≥ min M . Suppose there exists an x < min M such that
{|vi − x |} ≺w {|vi − m|} for some m ∈ M . Therefore, �s({|vi − x |}) ≤ �s({|vi −
m|}), and since �s is strictly decreasing, x ≥ m, which contradicts our assumption
that x < min M . In similar fashion we use �t to prove that no multiset {|vi − x |}
for x > max M is submajorized by an element of D(V ). Moreover, on the interval
[min M, max M], �s is strictly increasing and �t is strictly decreasing, so no element
of D(V ) submajorizes all the other elements of D(V ).

Corollary 1. The poset {{|vi − x |} : x ∈ R} ordered by ≺w has a least element if and

only if V is symmetric about a value m; this least element is {|vi − m|}.

Definition 6 does not tell us how to determine an ordering based on T-smallness in
finite time. Theorem 2 shows that it suffices to find y in inequality (3) for finitely many
x , thus permitting a polynomial-time algorithm for T-smallness.

Theorem 2. Let V = {v1, . . . , vn} and W = {w1, . . . , wn} be multisets of real num-

bers. Let S be the set of points S =
�

1
2 (vi + v j ) : 1 ≤ i ≤ j ≤ n

�
, and let S

�
be the set

of elements of S that lie in the middle interval of V . Then W is T-smaller than V if

and only if for each s in S
�
there exists a y such that

{|wi − y|} ≺w {|vi − s|}. (4)

Proof. As in the proof of Lemma 1, each � j is continuous and piecewise linear; its
slope is undefined only at the discontinuities of r j , which are precisely the elements of
S. Consider any two consecutive elements of S, s[k] and s[k+1]. Suppose there exist yk

and yk+1 such that

{|wi − yk |} ≺w {|vi − s[k]|} and {|wi − yk+1|} ≺w {|vi − s[k+1]|}.

Since each � j ({|wi − y|}) is convex, and each � j ({|vi − x |}) is linear for s[k] ≤ x ≤
s[k+1], we have for every x, y ∈ [s[k], s[k+1]] × [yk, yk+1] that

� j ({|wi − y|}) ≤ � j ({|vi − x |}).

This fact, taken together with Lemma 2, implies that it suffices to find a value y in
inequality (4) for each s ∈ S

�.

In Appendix A.2, we sketch an O(n4) algorithm for determining whether a multiset
W is T-smaller than a multiset V , where both multisets have n elements. This, in turn,
allows us to use submajorization to compare distances among arbitrary equivalence
classes of translationally related states.
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Our algorithm allows us to assert that the multiset {1, 2, 4} is closer to an equal
distribution than the distribution {2, 2, 5} even when we discount the effects of trans-
lation. In musical contexts, it allows us to assert that the chord (C, E, G) divides the
octave more evenly than (C, F, G), no matter how we measure musical distance. See
section A.3 of the appendix for details of these computations.

3.1. T-smallness and measures of center and dispersion. In this section, we
demonstrate that T-smallness is a generalization of dispersion measures such as the
standard deviation and least absolute deviation, while the middle interval of a multiset
is a generalization of various statistical measures of central tendency such as the mean
and median. Given a strongly isotone function f , the minimal value of f ({|vi − x |})
assesses, in some sense, the dispersion of V . That is, the value represents the size of
the smallest change that takes V to the line of agreement x1 = x2 = · · · = xn . This
is a kind of “distance” between the equivalence classes containing V and the origin.
Different metrics will of course measure this distance in different ways. If f = �n ,
then f ({|vi − x |}) = ||V − x ||1, and setting x equal to the median of V minimizes
||V − x ||1. This distance is also known as the least absolute deviation (LAD) of V .
Moreover, setting x equal to the mean of V minimizes ||V − x ||2; in this case, the
minimal value of ||V − x ||2 equals

√
n times the standard deviation of V . Figure 10

illustrates the minimal distances according to the L
1- and L

2-norms. We can think of
the minimal value of f ({|vi − x |}) as a “generalized dispersion measure” induced by
the strongly isotone function f .5 Furthermore, since the middle interval of V contains
every value x that minimizes f ({|vi − x |}) for some f , we can think of the middle
interval as the set of “generalized centers” of V . T-smallness implies that all strongly
isotone functions agree about the relative dispersions of two sets. So, for example, if
W is T-smaller than V , then the standard deviation, variance, and range of W are all
smaller than those of V . If W is not T-smaller than V , however, Theorem 3 shows
us how to construct a strongly isotone function that measures the dispersion of V as
smaller than that of W .

0

middle interval

LAD

x1 = x2 = · · · = xn

mean ×(1, . . . , 1)

median ×(1, . . . , 1)

V = (v1, . . . , vn)

Rn

√
n SD

Figure 10. In Rn , the middle interval corresponds to an interval on the line x1 = x2 = · · · xn . Each point in
this interval minimizes the distance from the line to point V , as measured by some strongly isotone function.
For example, the point whose coordinates equal the mean of V is the closest in the L

2 norm; the Euclidean
length of the line segment connecting it to V equals

√
n times the standard deviation of V . Moreover, the least

absolute deviation (LAD) of V is the L
1 distance between V and the point whose coordinates equal the median

of V .

5Recall that examples of strongly isotone functions include the � j functions and L
p- norms for p ≥ 1—in

fact, any symmetric norm on Rn is strongly isotone.
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Theorem 3. Let V = {v1, . . . , vn} be a multiset of real numbers.

1. For every strongly isotone function f , there exists at least one value x in the

middle interval of V that minimizes f ({|vi − x |}).
2. A value m lies in the middle interval of V if and only if there exists a strongly

isotone function fm such that

fm({|vi − m|}) < fm({|vi − x |}) for all x �= m.

3. A multiset of real numbers W = {w1, . . . , wn} is T-smaller than V if and only if

min
y∈R

f ({|wi − y|}) ≤ min
x∈R

f ({|vi − x |}) (5)

for all strongly isotone functions f .

Proof.

1. This statement follows from Lemma 2.
2. If fm({|vi − x |}) has a unique minimum at x = m, then it follows from state-

ment 1 that m lies in the middle interval of V . Now suppose that m lies in the
middle interval of V . If all the elements of V are identical, then �1({|vi − x |})
equals zero if and only if x = m, and hence fm = �1 is minimized at x = m.
Suppose V has more than one distinct element. We showed in the course of
the proof of Lemma 2 that there exist odd integers s ≤ t such that �s({|vi −
x |}) is strictly decreasing on the middle interval of V and �t({|vi − x |}) is
strictly increasing on the middle interval of V . Let αs = �s({|vi − m|}) and
αt = �t({|vi − m|}). Since V has more than one distinct element, αs and αt are
positive. We claim that the function

fm = max({αt�s, αs�t})

is a strongly isotone function (if g and h are strongly isotone, so is max(g, h)).
Moreover, since αt�s({|vi − x |}) is strictly decreasing when x < m and
αs�t({|vi − x |}) is strictly increasing when x > m, the unique minimum of
fm({|vi − x |}) occurs at x = m.

3. Clearly, if W is T-smaller than V , then inequality (5) holds for every strongly
isotone function. Suppose that W is not T-smaller than V . We will construct a
strongly isotone function F such that

min F({|wi − y|}) > min F({|vi − x |}). (6)

Since W is not T-smaller than V , there exists an x0 such that {|wi − y|} �≺w

{|vi − x0|} for all y. Without loss of generality, we assume x0 is in the middle
interval of V . Let

α j = � j ({|vi − x0|}).

If any (and hence all) of the α j ’s are zero, V has only one distinct element,
and F = �1 satisfies inequality (6). Alternately, all the α j ’s are nonzero, so we
define

F = max
�

�1

α1
,
�2

α2
, . . . ,

�n

αn

�
.
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Then F is a strongly isotone function. Since, as we have noted in the previous
section of this proof, at least one of the � j ’s is strictly increasing and at least
one is strictly decreasing on the middle interval of V ,

min F({|vi − x |}) = F({|vi − x0|}) = 1;

moreover, F({|vi − x |}) is strictly decreasing for x < x0 and strictly increasing
for x > x0. Since {|wi − y|} �≺w {|vi − x0|} for all y, for each y there exists a
j (y) such that

� j (y)({|vi − x0|}) < � j (y)({|wi − y|}). (7)

Then, for all y,

1 = � j (y)({|vi − x0|})
α j (y)

<
� j (y)({|wi − y|})

α j (y)

≤ F({|wi − y|}). (8)

Since 1 = min F({|vi − x |}), F satisfies (6).

4. APPLICATIONS. Submajorization is useful when we have greater credence in
the No-Crossings Principle than in our ability to chose a particular metric. This can oc-
cur when we are trying to quantify intuitions that are inherently nonspecific or vague. It
might seem incredible, for example, that there is some particular metric (L

1 as opposed
to L

2 or L
3 or L

∞) that exactly captures human intuitions about income inequality; in-
stead, it is reasonable to suppose that intuition supports general comparisons between
broadly different societies, without necessarily allowing us to make fine distinctions
among very similar ones. At the same time, we have very strong economic reasons
to endorse the No-Crossings Principle, which simply expresses the thought that effi-
cient redistribution will not give individuals an incentive to abandon their money. For
if the No-Crossings Principle were false, then individual A, richer than B before taxes,
could be made poorer than B by the most efficient and egalitarian sequence of taxes
and redistributions; under these circumstances, money would become a hot potato,
with A having an incentive to trade pre-tax places with B, in order to ensure a better
post-tax situation. Orderly economic life would scarcely be possible, as individuals
constantly tried to rid themselves of pre-tax money so as to ensure a better post-tax
outcome.6

In these contexts, submajorization can allow us to escape the tyranny of arbitrary
metrics without giving up our ability to make general comparisons among distances.
By articulating a class of metrical judgments that remain true regardless of which par-
ticular metric we choose—so long as that metric is compatible with the No-Crossings
Principle—it demarcates a “zone of agreement” among what we might define as “rea-
sonable” conceptions of distance. For some purposes, these coarse-grained judgments
may be entirely sufficient. And even when they are not, the submajorization partial
order allows us to distinguish claims that are true regardless of metric from those that
depend on a particular choice. In this sense, an approach based on submajorization
may help us avoid the false precision that can arise when we take particular metrics
too seriously.

6Note that this may sometimes occur in the real world; but if so, it is a reflection of inefficiency in the eco-
nomic system; submajorization merely requires that a perfectly efficient scheme not give people an incentive
to abandon money.
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In economics, inflation is represented by uniform scaling of wealth, represented
as translation when we measure wealth in log dollars. Unfortunately, the formal-
ism of Section 3 cannot be directly adapted to this case, since it is questionable
whether the size of a change corresponds to the displacement multiset in log dollar
space. However, when income is measured in dollars, there is a metric-independent
economic justification for comparing income distributions by projecting them into
a hyperplane containing a fixed amount of wealth. This simply expresses the basic
assumption of the conservation of money. A hyperplane determined by the equation
x1 + x2 + · · · + xn = c represents all the income distributions that are mutually ac-
cessible by a sequence of economic exchanges in the absence of inflation (call this
the no-inflation hyperplane). It is also the hyperplane that is picked out by the concept
of Euclidean orthogonality, as we saw in Section 3, but that fact is irrelevant in this
context; regardless of which metric you favor, the no-inflation hyperplane is important
for reasons of economic logic alone. Thus an income distribution X determines an
equivalence class αX of distributions that are equivalent under inflation (scaling by a
factor α > 0). Figure 11 shows that these equivalence classes are represented geomet-
rically by a pencil of rays emanating from the origin. Since we have good economic
reasons for choosing the no-inflation hyperplane, and since submajorization is invari-
ant under uniform scaling, we can therefore compare inflation-induced equivalence
classes. We simply project each class into the same no-inflation hyperplane, and use
submajorization on changes between these representatives.

hyperplanes of fixed wealth

rays represent
equivalence classes

under inflation

x1 = x2 = · · · = xn

Figure 11. Equivalence classes of income distributions intersect hyperplanes of fixed wealth.

Of course, submajorization has a long and varied history in the economics literature.
Economists originally applied submajorization to distributions of income rather than
changes in income (see Lorenz [8] and Zheng [14], for example). Much of this work
involves majorization, which is identical to submajorization except that it permits com-
parisons only among multisets with the same sum. Mitra and Ok [10] and D’Agostino
and Dardanoni [3] recognized the usefulness of submajorization in measuring income
changes; however, they do not explore the implications of submajorization on its own,
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nor do they connect submajorization to the No-Crossings Principle.7 Thus, though
the general concept of submajorization is quite familiar to economics, the approach
described in this paper is not. By connecting submajoriation to the No-Crossings Prin-
ciple, we provide a way to characterize the metrical intuitions encoded by this familiar
mathematical partial order. By providing a geometrical interpretation in terms of sym-
metric product spaces, we relate submajorization to the familiar triangle inequality.
More generally, by considering these issues in a more general geometrical setting,
rather than in the context of particular economic applications, we show that analogous
problems appear in a range of different contexts.

Indeed, we confront many of these same issues in music theory [13]. Musical
pitches can be represented as points on the line, with numerical values correspond-
ing to the logarithm of a soundwave’s fundamental frequency. Musicians often treat
notes that are an octave apart as being fundamentally similar, referring to them using
the same basic letter names. For instance, in scientific pitch notation, middle C is la-
beled C4, while the note an octave above that is C5. In situations where it is appropriate
to ignore octaves, musicians wrap linear pitch space into circular “pitch-class space,”
where all octave-related notes are represented by the same note. Musical chords (such
as “C major” or “F minor”) can be represented as multisets of points on this circle.
The configuration space of n points on the circle, or the “space of all possible chords,”
is the orbifold Tn/Sn , where Tn is the n-torus. Chord types (such as “major” or “dom-
inant seventh”) are equivalence classes of multisets of points on the circle, modulo
translation. The configuration space of chord types is Tn−1/Sn [2, 12]. When musi-
cians say “dominant seventh chords are quite close to diminished sevenths,” or “the
melodic minor scale is very similar to the diatonic,” they are referring to distances in
this quotient.

If “chords” correspond to states or income distributions, then “voice leadings” rep-
resent changes between states. In Western music, horizontal melodies define a se-
quence of bijections between the pitches in adjacent vertical chords, as in Figure 2(a);
these “voice leadings” are represented by the images of line segments in the orbifolds
Tn/Sn . The geometry here is closely analogous to the economic case, as can be seen by
the resemblance between Figures 1 and 2; however, there are additional complications
arising from the fact that the underlying one-dimensional space is a circle. Traditional
music pedagogy enjoins students to connect successive chords in a way that minimizes
the overall distance traveled by the voices or instruments. But theorists do not specify
precisely what quantity is to be minimized. Is it the largest distance moved by any
voice, the sum of all distances, or something else entirely?

Here again, it seems implausible that there is some particular metric that exactly
captures composers’ inherently vague intuitions about musical distance; it is highly
implausible that Mozart or Chopin, when improvising at the piano, thought very sys-
tematically about “the distance between chords,” let alone that their thinking can be
modeled by some particular norm such as L

2 or L
3. Nor is it really plausible that com-

posers’ improvisatory practice itself, as distinct from their conscious thinking, should
determine one such metric. Once again, we have very good musical reasons to endorse
the No-Crossings Principle. The avoidance of voice-crossings, besides being central to
traditional pedagogy, is well-grounded in listener psychology (since “auditory stream-
ing” often leads listeners to associate notes by register [7]) and the ergonomics of
instrumental performance (since crossings are often difficult to realize on instruments
such as pianos). Furthermore, Tymoczko [12] has argued that compositional practice

7As already noted, D’Agostino and Dardanoni [3] propose “order sensitivity” and “value sensitivity” con-
ditions that are strict versions of the No-Crossings Principle and the Monotonicity Principle, respectively.
However, D’Agostino and Dardanoni supplement these conditions with a range of additional constraints.
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suggests that composers think of musical distance in a way that is compatible with
submajorization, since they use similar voice leadings between chords, regardless of
whether the notes are close together or far apart in pitch space.8

Unlike the economic case, musical logic gives us no reason to focus on any par-
ticular hyperplane when considering distances between chord types, or equivalence
classes of chords under translation (musical transposition). Therefore, we must draw
on the full apparatus developed in Section 3. Here, the notion of T-closeness allows us
to compare “distances” between chord types without committing ourselves to any par-
ticular metric. For example, theorists have been interested in determining how evenly a
particular chord is distributed around the pitch-class circle [13]. T-closeness allows us
to assert that the major triad (C, E, G) is closer to an even division of the octave than is
(C, F, G) no matter how we measure musical distance. As shown in Appendix A.3, the
multiset W = {0, 0, 1}, representing the change from (C, E, G) = {0, 4, 7} to (C, E,
G�) = {0, 4, 8} is T-smaller than the multiset V = {0, −1, 1}, representing the change
from (C, F, G) = {0, 5, 7} to {0, 4, 8}. In fact, it is possible to show that T-closeness
produces a univocal evenness ranking of all the three-note chord types playable on an
ordinary piano.

There are a number of other applications in which the goal is to measure simulta-
neous changes, but there is no obvious reason to choose one metric over another. In
transportation and location problems, we think of states as representing locations of
goods, and changes as representing transportation of goods from one location to an-
other; the size of a change here represents the “cost” of transporting goods from one
point to other. The usefulness of submajorization in this context has been described by
Ogryczak [11], who notes that analogous problems arise in measuring economic in-
equality. In curve-fitting and error-analysis one wants to measure the overall distance
from a set of data points to a hypothesized curve; here again, there is often no obvious
reason, other than practicality, for favoring a particular norm. Our hope is that a uni-
fied discussion may help to reveal the similar conceptual issues arising in these various
contexts. Submajorization might in some cases provide a more principled alternative
to simply selecting a particular metric, allowing us to demarcate relationships that are
independent of this arbitrary choice.

A. APPENDIX.

A.1. Euclidean bounds on the submajorization ball.

Lemma 3. Let X = {x1, . . . , xn} ∈ Rn

+, let

r = min
�

j
−1/2� j (X) | 1 ≤ j ≤ n

�
,

and let

R = max
�
n

1/2�1(X), �n(X)
�
.

Let v be any vector in Rn
.

1. If |v| ≤ r , then {|vi |} ≺w X.

2. If |v| ≥ R, then X ≺w {|vi |},
8This would not be true if the avoidance of crossings were in conflict with the goal of finding short voice

leadings between subsequent chords; when notes were close together, the avoidance of crossings would dom-
inate, leading composers to use inefficient voice leadings, reserving efficient voice leadings for situations in
which notes were far apart.
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where |v| denotes the Euclidean length (L
2
-norm) of v. Moreover, these bounds are

optimal:

3. For any ρ > r , there exists a z ∈ Rn
such that |z| = ρ and {|zi |} �≺w X.

4. For any ρ < R, there exists a z ∈ Rn
such that |z| = ρ and X �≺w {|zi |}.

Proof.

1. Observe that for any nonnegative numbers y1, . . . , y j , we have that

y
2
1 + · · · + y

2
j
≤ (y1 + · · · + y j )

2 ≤ j (y
2
1 + · · · + y

2
j
).

If |v| ≤ r , then for 1 ≤ j ≤ n,

(� j {|vi |})2 = (|v[1]| + · · · + |v[ j]|)2 ≤ j (v2
[1] + · · · + v2

[ j]) ≤ jr
2 ≤ (� j (X))2.

We conclude that X submajorizes {|vi |}.
2. Suppose X �≺w {|vi |}; we claim that |v| < R. Choose j such that � j (X) >

� j ({|vi |}) = S. Note that |v[ j]| ≤ S/j . Let W = (S − ( j − 1)|v[ j]|, |v[ j]|, . . . ,
|v[ j]|). Then � j (W ) = S and |v| ≤ |W | because {|vi |} ≺w W and the L

2-norm
is strongly isotone. To see why {|vi |} ≺w W , note that the largest j elements
of {|vi |} are the result of applying a series of Dalton transfers to the largest j

elements of W , while the remaining elements of {|vi |} are smaller than the cor-
responding elements of W by monotonicity. If follows that W belongs to the
one-parameter family of multisets

{(S − ( j − 1)a, a, . . . , a) | 0 ≤ a ≤ S/j}.

A simple optimization argument shows that no multiset in this collection (in
particular, W ) has Euclidean norm more than the maximal value of {S, n

1/2
S/j}.

Since S < � j (X) ≤ �n(X) and S/j < � j (X)/j ≤ �1(X), we conclude that
|v| ≤ |W | < R = max

�
n

1/2�1(X), �n(X)
�
.

3. If ρ > r , then there exists a j , 1 ≤ j ≤ n, such that

ρ > j
−1/2� j (X).

Let z ∈ Rn be the vector with j nonzero coordinates of the form

z = ρ j
−1/2(1, . . . , 1, 0, . . . , 0).

Now, |z| = ρ, and

� j ({|zi |}) = ρ j
1/2 > � j (X),

so X does not submajorize {|zi |}.
4. If n

1/2�1(X) ≥ �n(X), then let z = ρn
−1/21. If n

1/2�1(X) < �n(X), then let
z = ρ(1, 0, . . . , 0).

A.2. Algorithm for determining T-smallness. We sketch an O(n4) algorithm for
determining whether a multiset W is T-smaller than a multiset V , where both multisets
have n elements.
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1. Find the n(n − 1) elements of S as in Theorem 2.
2. For each s ∈ S and each odd j , find the set of y such that

� j ({|wi − y|}) ≤ � j ({|vi − s|}). (9)

We claim that this computation is O(n2) for each s. Since the � j functions are
convex, the set of solutions to inequality (9) is either empty or a closed interval or
point. In general, solving an equation of the form f (y) ≤ a, where f is convex
and piecewise linear with k known nonlinear points, requires an algorithm of
order k. Evaluate f at each of the k points and determine on which of its linear
segments f (x) − a either changes sign or equals the zero function (there are
at most two segments). This step requires k + 1 computations. Since f (x) − a

is linear on these segments, we can easily find its zeros. The total number of
nonlinear points of the � j functions as j ranges from 1 to n is n(n − 1), so this
step is O(n2) for each s.

3. If inequality (9) has no solutions for some j , we conclude that W is not T-
smaller than V . Otherwise, the set of solutions to the inequality consists of n

closed intervals. Comparing the lower endpoints of the intervals to the upper
endpoints requires n

2 computations. If every lower endpoint is no larger than all
the upper endpoints, W is T-smaller than V .

Step 1 involves O(n2) computations and steps 2 and 3 involve O(n2) computations
for each s ∈ S. Since S has n(n − 1) elements, the algorithm is O(n4).

A.3. Examples. We claim that W = {1, 2, 4} is T-smaller than V = {2, 2, 5}. In this
case, S, the set of midpoints between pairs of elements of V , is S = {2, 3.5}. First,
{|vi − 2|} = {0, 0, 3}; we must find y such that {|wi − y|} ≺w {0, 0, 3}. Setting y = 2
gives us {1, 0, 2}, which suffices. Second, {|vi − 3.5|} = {1.5, 1.5, 1.5}; we must find y

such that {|wi − y|} ≺w {1.5, 1.5, 1.5}. Setting y = 2.5 gives us {1.5, 0.5, 1.5}, which
suffices. If we disregard the effects of translation, then we conclude that {1, 2, 4} is
closer to an even distribution of values than {2, 2, 5}.

In musical contexts, we are interested in knowing which chord is closest to an even
division of the octave. The augmented triad—the equivalence class containing (C, E,
G�) and its transpositions—is the “most even” three-note chord. We claim that the
major triad (C, E, G) is closer to an even division of the octave than is (C, F, G), no
matter how we measure musical distance. In other words, the multiset W = {0, 0, 1},
representing the distance between (C, E, G) = {0, 4, 7} and (C, E, G�) = {0, 4, 8} is
T-smaller than the multiset V = {0, −1, 1}, representing the distance between (C, F,
G) = {0, 5, 7} and {0, 4, 8}. In this case, S = {−0.5, 0, 0.5}. For all s ∈ S, {|vi − s|}
submajorizes {|wi |}.
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Does Numerology Allow a Group to Have Two Identity Elements?

Benoı̂t Rittaud, Université Paris-13, Institut Galilée, Laboratoire Analyse,
Géométrie et Applications.

Laurent Vivier, Université Paris Diderot, Laboratoire de Didactique André Revuz.

In numerology, the pseudoscience that focuses on describing the character of individuals [1], a specific
binary operation in the set N := {0, . . . , 9} is often considered. To add “numerologically” two elements
of N , first consider their usual sum, then, if bigger than 9, replace it by the sum of its digits. For 8 and 7,
for example, we get 8 + 7 = 15, then 1 + 5 = 6, so the “numerological sum” of 8 and 7 is: 8 ⊕ 7 = 6.

You might think that all of this is nothing more than usual addition modulo 9. But wait: here, the set
N contains ten elements, not nine as for Z/9Z. Moreover, since adding 9 to an integer does not change
its value modulo 9, (N , ⊕) seems to contain two identity elements, 9 and 0, a fact that is proved to be
impossible from the very beginning of group theory.

Explanation: 0 is indeed an identity element, and 9 is almost another one, since 9 ⊕ n = n for any
n ∈ N . . . except for n = 0. Hence, (N , ⊕) provides a limit example of the impossibility of having two
identity elements in a set embedded with a binary operation.

Let us emphasize the fact that (N , ⊕) is not itself a group (exercice: prove it!), but that this is not a
problem here, since the uniqueness of an identity element is a consequence of the very definition of an
identity element, and does not rely on an assumption of a group structure.
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